Countably generated Hilbert modules, the Kasparov Stabilisation Theorem, and frames in Hilbert modules

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frames in super Hilbert modules

In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are  generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.

متن کامل

*-frames for operators on Hilbert modules

$K$-frames which are generalization of frames on Hilbert spaces‎, ‎were introduced‎ ‎to study atomic systems with respect to a bounded linear operator‎. ‎In this paper‎, ‎$*$-$K$-frames on Hilbert $C^*$-modules‎, ‎as a generalization of $K$-frames‎, ‎are introduced and some of their properties are obtained‎. ‎Then some relations‎ ‎between $*$-$K$-frames and $*$-atomic systems with respect to a...

متن کامل

Frames for Hilbert C*-modules

There is growing evidence that Hilbert C*-module theory and the theory of wavelets and Gabor (i.e. Weyl-Heisenberg) frames are tightly related to each other in many aspects. Both the research fields can benefit from achievements of the other field. The goal of the talk given at the mini-workshop was to give an introduction to the theory of module frames and to Hilbert C*modules showing key anal...

متن کامل

Noncommutative Spherical Tight Frames in finitely generated Hilbert C*-modules

Let A be a fixed C*-algebra. In an arbitrary finitely generated projective A-module V ⊆ An, a spherical tight A-frame is a set of of k, k > n, elements f1, . . . , fk such that the associated matrix F = [f1, . . . , fk] up-to a constant multiple is a partial isometry of the Hilbert structure on the projective finitely generated A-module V . The space FA k,n of all such A-frames form a C*-algebr...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2002

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-02-06787-4